An Orlicz-space approach to superlinear elliptic systems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Orlicz Space Approach to Superlinear Elliptic Systems

In this paper we study superlinear elliptic systems in Hamiltonian form. Using an Orlicz-space setting, we extend the notion of critical growth to superlinear nonlinearities which do not have a polynomial growth. Existence of nontrivial solutions is proved for superlinear nonlinearities which are subcritical in this generalized sense.

متن کامل

An Orlicz-sobolev Space Setting for Quasilinear Elliptic Problems

In this paper we give two existence theorems for a class of elliptic problems in an Orlicz-Sobolev space setting concerning both the sublinear and the superlinear case with Neumann boundary conditions. We use the classical critical point theory with the Cerami (PS)-condition.

متن کامل

Elliptic Unilateral Problems in Orlicz Space and L 1 Data

In this paper, we shall be concerned with the existence result of Unilateral problem associated to the equations of the form, Au+ g(x, u,∇u) = f, where A is a Leray-Lions operator from its domain D(A) ⊂ W 1 0 LM (Ω) into WEM (Ω). On the nonlinear lower order term g(x, u,∇u), we assume that it is a Carathéodory function having natural growth with respect to |∇u|, and satisfies the sign condition...

متن کامل

On a superlinear elliptic equation

In this note we establish multiple solutions for a semilinear elliptic equation with superlinear nonlinearility without assuming any symmetry.

متن کامل

On Neumann “superlinear” elliptic problems

In this paper we are going to show the existence of a nontrivial solution to the following model problem,

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2005

ISSN: 0022-1236

DOI: 10.1016/j.jfa.2004.09.008